Atmosphere (Aug 2024)
Forecasting In-Flight Icing over Greece: Insights from a Low-Pressure System Case Study
Abstract
Forecasting in-flight icing conditions is crucial for aviation safety, particularly in regions with variable and complex meteorological configurations, such as Greece. Icing accretion onto the aircraft’s surfaces is influenced by the presence of supercooled water in subfreezing environments. This paper outlines a methodology of forecasting icing conditions, with the development of the Icing Potential Algorithm that takes into consideration the meteorological scenarios related to icing accretion, using state-of-the-art Numerical Weather Prediction model results, and forming a fuzzy logic tree based on different membership functions, applied for the first time over Greece. The synoptic situation of an organized low-pressure system passage, with occlusion, cold and warm fronts, over Greece that creates dynamically significant conditions for icing formation was investigated. The sensitivity of the algorithm was revealed upon the precipitation, cloud type and vertical velocity effects. It was shown that the greatest icing intensity is associated with single-layer ice and multi-layer clouds that are comprised of both ice and supercooled water, while convectivity and storm presence lead to also enhancing the icing formation. A qualitative evaluation of the results with satellite, radar and METAR observations was performed, indicating the general agreement of the method mainly with the ground-based observations.
Keywords