Subterranean Biology (Jan 2019)

Mitochondrial sequence data indicate “Vicariance by Erosion” as a mechanism of species diversification in North American Ptomaphagus (Coleoptera, Leiodidae, Cholevinae) cave beetles

  • Vincent L. Leray,
  • Jason Caravas,
  • Markus Friedrich,
  • Kirk S. Zigler

DOI
https://doi.org/10.3897/subtbiol.29.31377
Journal volume & issue
Vol. 29
pp. 35 – 57

Abstract

Read online Read online Read online

Small carrion beetles (Coleoptera: Leiodidae: Cholevinae) are members of cave communities around the world and important models for understanding the colonization of caves, adaptation to cave life, and the diversification of cave-adapted lineages. We developed a molecular phylogeny to examine the diversification of the hirtus-group of the small carrion beetle genus Ptomaphagus. The hirtus-group has no surface-dwelling members; it consists of 19 short-range endemic cave- and soil-dwelling species in the central and southeastern United States of America. Taxonomic, phylogenetic and biogeographic data were previously interpreted to suggest the hirtus-group diversified within the past 350,000 years through a series of cave colonization and speciation events related to Pleistocene climate fluctuations. However, our time-calibrated molecular phylogeny resulting from the analysis of 2,300 nucleotides from five genes across three mitochondrial regions (cox1, cytb, rrnL-trnL-nad1) for all members of the clade paints a different picture. We identify three stages of diversification in the hirtus-group: (1) ~10 million years ago (mya), the lineage that develops into P. shapardi, a soil-dwelling species from the Ozarks, diverged from the lineage that gives rise to the 18 cave-obligate members of the group; (2) between 8.5 mya and 6 mya, seven geographically distinct lineages diverged across Kentucky, Tennessee, Alabama and Georgia; six of these lineages represent a single species today, whereas (3) the ‘South Cumberlands’ lineage in Tennessee and Alabama diversified into 12 species over the past ~6 my. While the events triggering diversification during the first two stages remain to be determined, the distributions, phylogenetic relationships and divergence times in the South Cumberlands lineage are consistent with populations being isolated by vicariant events as the southern Cumberland Plateau eroded and fragmented over millions of years.