Scientific Reports (Apr 2017)

Improving Optical Temperature Sensing Performance of Er3+ Doped Y2O3 Microtubes via Co-doping and Controlling Excitation Power

  • Xiangfu Wang,
  • Ye Wang,
  • Jose Marques-Hueso,
  • Xiaohong Yan

DOI
https://doi.org/10.1038/s41598-017-00838-w
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 13

Abstract

Read online

Abstract This work presents a new method to effectively improve the optical temperature behavior of Er3+ doped Y2O3 microtubes by co-doping of Tm3+ or Ho3+ ion and controlling excitation power. The influence of Tm3+ or Ho3+ ion on optical temperature behavior of Y2O3:Er3+ microtubes is investigated by analyzing the temperature and excitation power dependent emission spectra, thermal quenching ratios, fluorescence intensity ratios, and sensitivity. It is found that the thermal quenching of Y2O3:Er3+ microtubes is inhibited by co-doping with Tm3+ or Ho3+ ion, moreover the maximum sensitivity value based on the thermal coupled 4S3/2/2H11/2 levels is enhanced greatly and shifts to the high temperature range, while the maximum sensitivity based on 4F9/2(1)/4F9/2(2) levels shifts to the low temperature range and greatly increases. The sensitivity values are dependent on the excitation power, and reach two maximum values of 0.0529/K at 24 K and 0.0057/K at 457 K for the Y2O3:1%Er3+, 0.5%Ho3+ at 121 mW/mm2 excitation power, which makes optical temperature measurement in wide temperature range possible. The mechanism of changing the sensitivity upon different excitation densities is discussed.