Journal of Experimental & Clinical Cancer Research (Sep 2023)
Impact of chemotherapeutic agents on liver microenvironment: oxaliplatin create a pro-metastatic landscape
Abstract
Abstract Background Chemotherapeutic agents are used to control tumor proliferation. However, their influence in the pre-metastatic niche of target organs has not been well studied. Oxaliplatin (OXA) is a drug applied in standard treatments of colorectal cancer (CRC), while the direct effect of which on the pre-metastatic microenvironment of the liver remains unclear. Methods Models of liver metastases were established with luciferase expressing CT26 cells in BALB/c and BALB/c-nude mice. Single-cell RNA Sequencing was performed to examine the immune microenvironment in the liver elicited by OXA. Immunofluorescence and flowcytometry were utilized to confirm the changes in the number of immune cells. LDH, CellTrace CFSE Cell Proliferation and apoptosis assays were conducted to explore the impact of OXA on T cells ex vivo. The correlation between chemotherapy-related lymphopenia and metastases was assessed by meta-analysis. Results Herein we discovered that administration of OXA prior to the occurrence of liver metastasis actually accelerated tumor development and colonization in the liver. Single-cell RNA sequencing revealed that the landscape of the liver immune microenvironment had been changed to immunosuppressive phenotype. Macrophages after the treatment of OXA exhibited a high ability to inhibit the activation of T cells. Further investigation revealed a significant decrease in the number of T cells in the liver, particularly CD8+ T cells with reduced capacity of proliferation, activation, and killing. When mice were treated with T cell supplementation, the OXA-induced metastasis was notably abolished, indicating that the OXA-primed liver microenvironment could be reversed by the infusion of T cells. Consistent with our findings in mice, a meta-analysis was performed to verify that chemotherapy-related lymphopenia was associated with an inferior prognosis related with high incidence of metastasis, suggesting the pivotal role of chemotherapy in pre-metastatic niche formation. Furthermore, a notable reduction in the count of both macrophages and T cells was observed in the liver of colorectal cancer (CRC) patient undergoing OXA-based chemotherapy. Conclusions Our findings proposed that immunosuppressive microenvironment in liver induced by OXA enhanced liver metastasis of colorectal cancer, which highlighted a new consideration to balance the pro metastases and anti-cancer possibility of OXA treatment.
Keywords