Condensed Matter (Aug 2020)
Controlling Electrical Conduction through Noble Metal Thin Films by Surface Plasmon Resonance
Abstract
We have conducted in situ measurements of the surface plasmons and electrical resistivity of noble metal thin films. We present results for the electrical resistivity of these materials as functions of the angle of incidence for p-polarized light of wavelength λ = 632 nm in the Kretschmann configuration optical system. We observe a significantly lower resistivity (higher conductivity) under resonance conditions for the surface plasmon polaritons. The resistivity data are supported by COMSOL simulations of the evanescent fields associated with the surface plasmons. We discuss the resistivity data in terms of the theoretical models, which suggest that the electrical conductivity of the transition metals is sensitive to Umklapp electron-electron scattering and attractive interactions between free electrons because of the screening of the d-band electrons by the s-band electrons.
Keywords