Biology (Nov 2020)
Probing Membrane Protein Assembly into Nanodiscs by In Situ Dynamic Light Scattering: A<sub>2A</sub> Receptor as a Case Study
Abstract
Membrane proteins play a crucial role in cell physiology by participating in a variety of essential processes such as transport, signal transduction and cell communication. Hence, understanding their structure–function relationship is vital for the improvement of therapeutic treatments. Over the last decade, based on the development of detergents, amphipoles and styrene maleic-acid lipid particles (SMALPs), remarkable accomplishments have been made in the field of membrane protein structural biology. Nevertheless, there are still many drawbacks associated with protein–detergent complexes, depending on the protein in study or experimental application. Recently, newly developed membrane mimetic systems have become very popular for allowing a structural and functional characterisation of membrane proteins in vitro. The nanodisc technology is one such valuable tool, which provides a more native-like membrane environment than detergent micelles or liposomes. In addition, it is also compatible with many biophysical and biochemical methods. Here we describe the use of in situ dynamic light scattering to accurately and rapidly probe membrane proteins’ reconstitution into nanodiscs. The adenosine type 2A receptor (A2AR) was used as a case study.
Keywords