South African Journal of Chemical Engineering (Jan 2024)

Characterization, kinetics and thermodynamic evaluation of struvite produced using ferrochrome slag as a magnesium source

  • L.B Moyo,
  • G.S. Simate,
  • N Hobane,
  • C Dube

Journal volume & issue
Vol. 47
pp. 83 – 90

Abstract

Read online

There is limited data on studies that have focused on the kinetics, thermodynamics, and characterization of struvite crystallization from alternative magnesium sources. This study focused on thermal analysis of struvite (produced using ferrochrome slag as a magnesium source) and the results indicated that the residual quantities of struvite were lower than the theoretical mass loss of struvite of 51.42%. When using ferrochrome slag (FCS) as the magnesium source, 47.9%, 47.4%, and 46.9% losses in mass were observed for heating rates of 5°C/min; 10°C/min and 15°C/min respectively. The mean activation energies for struvite produced using FCS were deduced using isoconversional kinetic methods and ranged from 49.81to 56.20 kJ/mol which is very similar to the activation energies deduced using MgCl2. The study also focused on the surface morphology, and particle size of the final product at different pH and N:P ratios. The final particle size distribution of the product was significantly influenced by the solution pH. To improve the crystal growth kinetics for both MgCl2 and FCS, a high ratio of N:P molar ratios should be adopted. The product's highest median particle size was obtained using FCS as the magnesium source at a low pH. Median particle size increased with decrease in pH, at a pH of 7.5 the recorded median particle size was 96 µm whilst, the lowest was 31 µm at a pH of 9.5. The highest percent of fines (<10 µm) was recorded at a pH of 9.5 using FCS as magnesium source in the metastable region of struvite precipitation whereas at a pH of 7.5 no fines (<10 µm) were recorded. SEM images confirmed that the struvite underwent morphological changes when prepared with FCS in comparison to that produced using MgCl2. The surface morphology of the finished product demonstrated the presence of irregular shaped particles, due to presence of impurities. The kinetic data showed that struvite precipitation was limited by the chemical reaction step. Model fitting was used to determine the reaction control mechanism and the average activation energies obtained by four model free methods were FWO (56.2), KAS (51.67) Starink (49.61) and Tang (49.81) kJ/mol, indicating that the FWO method was the least accurate method. The thermodynamic data indicated that the thermal degradation of struvite crystals has a high degree of disorder, and the process is endothermic, irreversible, and non-spontaneous.

Keywords