Atmospheric Chemistry and Physics (Jan 2013)

Impact of Gobi desert dust on aerosol chemistry of Xi'an, inland China during spring 2009: differences in composition and size distribution between the urban ground surface and the mountain atmosphere

  • G. H. Wang,
  • B. H. Zhou,
  • C. L. Cheng,
  • J. J. Cao,
  • J. J. Li,
  • J. J. Meng,
  • J. Tao,
  • R. J. Zhang,
  • P. Q. Fu

DOI
https://doi.org/10.5194/acp-13-819-2013
Journal volume & issue
Vol. 13, no. 2
pp. 819 – 835

Abstract

Read online

Composition and size distribution of atmospheric aerosols from Xi'an city (~400 m, altitude) in inland China during the spring of 2009 including a massive dust event on 24 April were measured and compared with a parallel measurement at the summit (2060 m, altitude) of Mt. Hua, an alpine site nearby Xi'an. EC (elemental carbon), OC (organic carbon) and major ions in the city were 2–22 times higher than those on the mountaintop during the whole sampling period. Compared to that in the non-dust period a sharp increase in OC was observed at both sites during the dust period, which was mainly caused by an input of biogenic organics from the Gobi desert. However, adsorption/heterogeneous reaction of gaseous organics with dust was another important source of OC in the urban, contributing 22% of OC in the dust event. In contrast to the mountain atmosphere where fine particles were less acidic when dust was present, the urban fine particles became more acidic in the dust event than in the non-dust event, mainly due to enhanced heterogeneous formation of nitrate and diluted NH<sub>3</sub>. Cl<sup>&minus;</sup> and NO<sub>3</sub><sup>&minus;</sup> in the urban air during the dust event significantly shifted toward coarse particles. Such redistributions were further pronounced on the mountaintop when dust was present, resulting in both ions almost entirely staying in coarse particles. On the contrary, no significant spatial difference in size distribution of SO<sub>4</sub><sup>2&minus;</sup> was found between the urban ground surface and the mountain atmosphere, which dominated in the fine mode (<2.1 μm) during the nonevent and comparably distributed in the fine (<2.1 μm) and coarse (>2.1 μm) modes during the dust event.