International Journal of Nanomedicine (Aug 2016)
MDM2–MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance
Abstract
Ilaria Moscetti,1 Emanuela Teveroni,2,3 Fabiola Moretti,3 Anna Rita Bizzarri,1 Salvatore Cannistraro1 1Biophysics and Nanoscience Centre, Department DEB, Università della Tuscia, Viterbo, Italy; 2Department of Endocrinology and Metabolism, Università Cattolica di Roma, Roma, Italy; 3Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Roma, Italy Abstract: Murine double minute 2 (MDM2) and 4 (MDM4) are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2–MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2–MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD) in the micromolar range for the MDM2–MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2–MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2–MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation. Keywords: MDM2, MDM4, atomic force spectroscopy, surface plasmon resonance