International Journal of Chemical Engineering (Jan 2016)

Exact Optimum Design of Segmented Thermoelectric Generators

  • M. Zare,
  • H. Ramin,
  • S. Naemi,
  • R. Hosseini

DOI
https://doi.org/10.1155/2016/6914735
Journal volume & issue
Vol. 2016

Abstract

Read online

A considerable difference between experimental and theoretical results has been observed in the studies of segmented thermoelectric generators (STEGs). Because of simplicity, the approximate methods are widely used for design and optimization of the STEGs. This study is focused on employment of exact method for design and optimization of STEGs and comparison of exact and approximate results. Thus, using new highly efficient thermoelectric materials, four STEGs are proposed to operate in the temperature range of 300 to 1300 kelvins. The proposed STEGs are optimally designed to achieve maximum efficiency. Design and performance characteristics of the optimized generators including maximum conversion efficiency and length of elements are calculated through both exact and approximate methods. The comparison indicates that the approximate method can cause a difference up to 20% in calculation of some design characteristics despite its appropriate results in efficiency calculation. The results also show that the maximum theoretical efficiency of 23.08% is achievable using the new proposed STEGs. Compatibility factor of the selected materials for the proposed STEGs is also calculated using both exact and approximate methods. The comparison indicates a negligible difference in calculation of compatibility factor, despite the considerable difference in calculation of reduced efficiency (temperature independence efficiency).