Water (Dec 2021)
Effect of Smashing Ridge Tillage Depth on Soil Water, Salinity, and Yield in Saline Cotton Fields in South Xinjiang, China
Abstract
To explore the potential of smashing ridge tillage irrigation, it is necessary to investigate how smashing ridge tillage technology with mulched drip irrigation affects soil water, salinity, and cotton yield in saline fields. We conducted a two-year (2020–2021) field experiment to study the effects of different smashing ridge tillage depths on soil bulk density, moisture, salinity, dry matter production, yield, and its constituents (effective bolls, 100-bell weight). There were three smashing ridge tillage depths: A (20 cm), B (40 cm), and C (60 cm), with traditional tillage as the CT. The results showed that all of the smashing ridge tillage could reduce soil bulk density, improve the utilization and uptake of deep soil water during the rapid growth period, and reduce the soil salt content. Compared with the CT treatment, the average soil bulk density of the 0–60 cm soil layer in treatments A, B, and C in 2020 and 2021 decreased by 3.05%, 5.87%, 10.09%, and 1.65%, 4.48%, and 8.49%, respectively. The average soil water content in the 0–120 cm soil layer at the flowering and boll stage decreased by 3.68%, 6.28%, 9.04%, and 3.59%, 6.52%, and 9.98%, respectively; the soil salt content in the 0–120 cm soil layer at the boll opening stage decreased by 4.21%, 6.75%, 11.95%, and 5.47%, 24.25%, and 54.13%, respectively. Cotton dry matter production and yield tended to increase with an increasing depth of smash ridge tillage. Treatment C obtained the maximum dry matter production, seed cotton yield, effective bolls, and 100-boll weight. The dry matter production at the boll opening stage was significantly increased by 17.16% and 15.91%, and the yield was significantly increased by 65.24% and 84.14% in treatments C in 2020 and 2021, respectively, compared to CT. The smashing ridge tillage of 60 cm can optimize the structure of the soil tillage layer and also reduce soil salinity and increase yield, which is the suitable depth of smashing ridge tillage for saline cotton fields in the south of Xinjiang. The findings of the study can provide some theoretical basis and practical experience for the improvement of saline soils and sustainable agricultural development in South Xinjiang, China.
Keywords