Moroccan Journal of Pure and Applied Analysis (May 2022)

Steklov problems for the p−Laplace operator involving Lq-norm

  • Alaoui My Driss Morchid,
  • Khalil Abdelouahd El,
  • Touzani Abdelfattah

DOI
https://doi.org/10.2478/mjpaa-2022-0016
Journal volume & issue
Vol. 8, no. 2
pp. 228 – 243

Abstract

Read online

In this paper, we are concerned with the study of the spectrum for the nonlinear Steklov problem of the form {Δpu=|u|p-2uin Ω,|∇u|p-2∂u∂v=λ‖u‖q,∂Ωp-q|u|q-2uon ∂Ω,\left\{ {\matrix{{{\Delta _p}u = {{\left| u \right|}^{p - 2}}u} \hfill & {{\rm{in}}\,\Omega ,} \hfill \cr {{{\left| {\nabla u} \right|}^{p - 2}}{{\partial u} \over {\partial v}} = \lambda \left\| u \right\|_{q,\partial \Omega }^{p - q}{{\left| u \right|}^{q - 2}}u} \hfill & {{\rm{on}}\,\partial \Omega ,} \hfill \cr } } \right. where Ω is a smooth bounded domain in ℝN(N ≥ 1), λ is a real number which plays the role of eigenvalue and the unknowns u ∈ W1,p(Ω). Using the Ljusterneck-Shnirelmann theory on C1 manifold and Sobolev trace embedding we prove the existence of an increasing sequence positive of eigenvalues (λk)k≥1, for the above problem. We then establish that the first eigenvalue is simple and isolated.

Keywords