Mathematics (Oct 2023)

Study on Orthogonal Sets for Birkhoff Orthogonality

  • Xiaomei Wang,
  • Donghai Ji,
  • Yueyue Wei

DOI
https://doi.org/10.3390/math11204320
Journal volume & issue
Vol. 11, no. 20
p. 4320

Abstract

Read online

We introduce the notion of orthogonal sets for Birkhoff orthogonality, which we will call Birkhoff orthogonal sets in this paper. As a generalization of orthogonal sets in Hilbert spaces, Birkhoff orthogonal sets are not necessarily linearly independent sets in finite-dimensional real normed spaces. We prove that the Birkhoff orthogonal set A={x1,x2,…,xn}(n≥3) containing n−3 right symmetric points is linearly independent in smooth normed spaces. In particular, we obtain similar results in strictly convex normed spaces when n=3 and in both smooth and strictly convex normed spaces when n=4. These obtained results can be applied to the mutually Birkhoff orthogonal sets studied in recently.

Keywords