Diagnostics (May 2021)

Assessment of the Adaptive Force of Elbow Extensors in Healthy Subjects Quantified by a Novel Pneumatically Driven Measurement System with Considerations of Its Quality Criteria

  • Silas Dech,
  • Frank N. Bittmann,
  • Laura V. Schaefer

DOI
https://doi.org/10.3390/diagnostics11060923
Journal volume & issue
Vol. 11, no. 6
p. 923

Abstract

Read online

Adaptive Force (AF) reflects the capability of the neuromuscular system to adapt adequately to external forces with the intention of maintaining a position or motion. One specific approach to assessing AF is to measure force and limb position during a pneumatically applied increasing external force. Through this method, the highest (AFmax), the maximal isometric (AFisomax) and the maximal eccentric Adaptive Force (AFeccmax) can be determined. The main question of the study was whether the AFisomax is a specific and independent parameter of muscle function compared to other maximal forces. In 13 healthy subjects (9 male and 4 female), the maximal voluntary isometric contraction (pre- and post-MVIC), the three AF parameters and the MVIC with a prior concentric contraction (MVICpri-con) of the elbow extensors were measured 4 times on two days. Arithmetic mean (M) and maximal (Max) torques of all force types were analyzed. Regarding the reliability of the AF parameters between days, the mean changes were 0.31–1.98 Nm (0.61%–5.47%, p = 0.175–0.552), the standard errors of measurements (SEM) were 1.29–5.68 Nm (2.53%–15.70%) and the ICCs(3,1) = 0.896–0.996. M and Max of AFisomax, AFmax and pre-MVIC correlated highly (r = 0.85–0.98). The M and Max of AFisomax were significantly lower (6.12–14.93 Nm; p ≤ 0.001–0.009) and more variable between trials (coefficient of variation (CVs) ≥ 21.95%) compared to those of pre-MVIC and AFmax (CVs ≤ 5.4%). The results suggest the novel measuring procedure is suitable to reliably quantify the AF, whereby the presented measurement errors should be taken into consideration. The AFisomax seems to reflect its own strength capacity and should be detected separately. It is suggested its normalization to the MVIC or AFmax could serve as an indicator of a neuromuscular function.

Keywords