PLoS Computational Biology (May 2019)

EAT-Rice: A predictive model for flanking gene expression of T-DNA insertion activation-tagged rice mutants by machine learning approaches.

  • Chi-Chou Liao,
  • Liang-Jwu Chen,
  • Shuen-Fang Lo,
  • Chi-Wei Chen,
  • Yen-Wei Chu

DOI
https://doi.org/10.1371/journal.pcbi.1006942
Journal volume & issue
Vol. 15, no. 5
p. e1006942

Abstract

Read online

T-DNA activation-tagging technology is widely used to study rice gene functions. When T-DNA inserts into genome, the flanking gene expression may be altered using CaMV 35S enhancer, but the affected genes still need to be validated by biological experiment. We have developed the EAT-Rice platform to predict the flanking gene expression of T-DNA insertion site in rice mutants. The three kinds of DNA sequences including UPS1K, DISTANCE, and MIDDLE were retrieved to encode and build a forecast model of two-layer machine learning. In the first-layer models, the features nucleotide context (N-gram), cis-regulatory elements (Motif), nucleotide physicochemical properties (NPC), and CG-island (CGI) were used to build SVM models by analysing the concealed information embedded within the three kinds of sequences. Logistic regression was used to estimate the probability of gene activation which as feature-encoding weighting within first-layer model. In the second-layer models, the NaiveBayesUpdateable algorithm was used to integrate these first layer-models, and the system performance was 88.33% on 5-fold cross-validation, and 79.17% on independent-testing finally. In the three kinds of sequences, the model constructed by Middle had the best contribution to the system for identifying the activated genes. The EAT-Rice system provided better performance and gene expression prediction at further distances when compared to the TRIM database. An online server based on EAT-rice is available at http://predictor.nchu.edu.tw/EAT-Rice.