Remote Sensing (May 2024)

Spatiotemporal Evolution and Factors Influencing Regional Ecological Land in a Multidimensional Perspective: A Case Study of the Beijing–Tianjin–Hebei Region

  • Xingbang Wang,
  • Ze Xu,
  • Jing Huang,
  • Zhengfeng Zhang

DOI
https://doi.org/10.3390/rs16101714
Journal volume & issue
Vol. 16, no. 10
p. 1714

Abstract

Read online

A systematic analysis of the spatiotemporal evolution patterns and factors influencing ecological land (EL) can support the optimization of EL protection policies and ensure the stability of regional ecosystems. Based on remote sensing data, using the gravity center shift model, the landscape pattern index, and the equivalent factor method, the characteristics of EL evolution in the Beijing–Tianjin–Hebei (BTH) region from 1980 to 2020 were analyzed. A fixed-effects model was used to quantitatively explore the factors influencing EL evolution and heterogeneity analysis. The results are as follows: (1) The EL area exhibited a trend of initial decrease followed by a subsequent increase during the study period. The most significant area transfer occurred between cropland and EL, but, after the 21st century, the proportion of area transfer between construction land and EL noticeably increased. (2) The compactness and fragmentation of EL showed a certain spatiotemporal stability, but the spatial distribution of compactness and fragmentation hot and cold spots exhibited significant differences. The fragmentation hot spots mainly displayed a strip distribution, while those of compactness showed a clustered distribution. (3) Although the ecosystem service value in the BTH region demonstrated dynamic “M”-shaped changes, the distribution of hot and cold spots still exhibited spatial stability. Regulating services consistently occupied a higher proportion of the sub-service functions, while cultural services still needed further enhancement. (4) Factors influencing the evolution of areas and values demonstrated similarities. The landscape was significantly influenced by construction land, showing a non-linear “U”-shaped relationship with fragmentation. Different economic development gradients and altitudes exhibited differentiated characteristics in terms of their influencing factors. This study provides scientific support for dynamically and precisely adjusting governmental EL management policies, contributing to the sustainable development of regional socio-economics.

Keywords