Journal of Translational Medicine (Feb 2022)

IRF-2 inhibits cancer proliferation by promoting AMER-1 transcription in human gastric cancer

  • Yan-Jie Chen,
  • Shu-Neng Luo,
  • Hao Wu,
  • Ning-Ping Zhang,
  • Ling Dong,
  • Tao-Tao Liu,
  • Li Liang,
  • Xi-Zhong Shen

DOI
https://doi.org/10.1186/s12967-022-03275-0
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Interferon regulatory factor 2 (IRF-2) acts as an anti-oncogene in gastric cancer (GC); however, the underlying mechanism remains unknown. Methods This study determined the expression of IRF-2 in GC tissues and adjacent non-tumor tissues using immunohistochemistry (IHC) and explored the predictive value of IRF-2 for the prognoses of GC patients. Cell function and xenograft tumor growth experiments in nude mice were performed to test tumor proliferation ability, both in vitro and in vivo. Chromatin immunoprecipitation sequencing (ChIP-Seq) assay was used to verify the direct target of IRF-2. Results We found that IRF-2 expression was downregulated in GC tissues and was negatively correlated with the prognoses of GC patients. IRF-2 negatively affected GC cell proliferation both in vitro and in vivo. ChIP-Seq assay showed that IRF-2 could directly activate AMER-1 transcription and regulate the Wnt/β-catenin signaling pathway, which was validated using IHC, in both tissue microarray and xenografted tumor tissues, western blot analysis, and cell function experiments. Conclusions Increased expression of IRF-2 can inhibit tumor growth and affect the prognoses of patients by directly regulating AMER-1 transcription in GC and inhibiting the Wnt/β-catenin signaling pathway.

Keywords