Computation (Apr 2024)
Efficient Numerical Solutions for Fuzzy Time Fractional Diffusion Equations Using Two Explicit Compact Finite Difference Methods
Abstract
This article introduces an extension of classical fuzzy partial differential equations, known as fuzzy fractional partial differential equations. These equations provide a better explanation for certain phenomena. We focus on solving the fuzzy time diffusion equation with a fractional order of 0 α ≤ 1, using two explicit compact finite difference schemes that are the compact forward time center space (CFTCS) and compact Saulyev’s scheme. The time fractional derivative uses the Caputo definition. The double-parametric form approach is used to transfer the governing equation from an uncertain to a crisp form. To ensure stability, we apply the von Neumann method to show that CFTCS is conditionally stable, while compact Saulyev’s is unconditionally stable. A numerical example is provided to demonstrate the practicality of our proposed schemes.
Keywords