Lubricants (Oct 2022)
Implications of the Use of Biodiesel on the Longevity and Operation of Particle Filters
Abstract
While biodiesel is one of many necessary steps forward in a cleaner transportation future, alkali metal residuals, including Na and K (in the form of oxides, sulfates, hydroxides, and carbonates) originating from fuel production catalysts were found to be detrimental to emissions control components. Na + K and Ca + Mg (also biodiesel production byproducts) are regulated by ASTM-D6751 standards (American Society for Testing and Materials) to be less than 5 ppm for B100; however, the literature gives examples of physical and chemical degradation of automotive emissions catalysts and their substrates with these Na and K residuals. The purpose of this study is to investigate the impacts of ash from Na-doped biodiesel fuel (B20) on a diesel particulate filter (DPF). Investigations found that the Na-ash accumulated in the DPF has several unique properties which help to fundamentally explain some of the interactions and impacts of biodiesel on the particle filter. The biodiesel-related Na-ash was found to (1) have a significantly lower melting temperature than typical ash from inorganic lubricant additives and Ultra Low Sulfur Diesel (ULSD) fuel resulting in ash particles sintered to the DPF catalyst/substrate, (2) have a primary particle size which is about an order of magnitude larger than typical ash, (3) produce a larger amount of ash resulting in significantly thick wall ash layers and (4) penetrate the DPF substrate about 3× deeper than typical ULSD and lubricant-related ash. This study utilizes numerous characterization techniques to investigate the interactions between biodiesel-related ash and a DPF, ranging from visualization to composition to thermal analysis methods. The findings suggest the need for tighter control of the thermal environment in the DPF when using biodiesel, additional/improved DPF cleaning efforts, and avoidance of unregulated biodiesel with high Na/K levels.
Keywords