Bioactive Materials (Dec 2017)

In situ assembly of fibrinogen/hyaluronic acid hydrogel via knob-hole interaction for 3D cellular engineering

  • Shengjie Huang,
  • Chunfen Wang,
  • Jingwei Xu,
  • Lie Ma,
  • Changyou Gao

DOI
https://doi.org/10.1016/j.bioactmat.2017.09.002
Journal volume & issue
Vol. 2, no. 4
pp. 253 – 259

Abstract

Read online

Hyaluronic acid (HA)-based hydrogels have applied widely for biomedical applications due to its biocompatibility and biodegradability. However, the use of initiators or crosslinkers during the hydrogel formation may cause cytotoxicity and thereby impair the biocompatibility. Inspired by the crosslinking mechanism of fibrin gel, a novel HA-based hydrogel was developed via the in situ supramolecular assembly based on knob-hole interactions between fibrinogen and knob-grafted HA (knob-g-HA) in this study. The knob-grafted HA was synthesized by coupling knob peptides (GPRPAAC, a mimic peptide of fibrin knob A) to HA via Michael addition. Then the translucent fibrinogen/knob-g-HA hydrogels were prepared by simply mixing the solutions of knob-g-HA and fibrinogen at the knob/hole ratio of 1.2. The rheological behaviors of the fibrinogen/knob-g-HA hydrogels with the fibrinogen concentrations of 50, 100 and 200 mg/mL were evaluated, and it was found that the dynamic storage moduli (G′) were higher than the loss moduli (G″) over the whole frequency range for all the groups. The SEM results showed that fibrinogen/knob-g-HA hydrogels presented the heterogeneous mesh-like structures which were different from the honeycomb-like structures of fibrinogen/MA-HA hydrogels. Correspondingly, a higher swelling ratio was obtained in the groups of fibrinogen/knob-g-HA hydrogel. Finally, the cytocompatibility of fibrinogen/knob-g-HA hydrogels was proved by live/dead stainings and MTT assays in the 293T cells encapsulation test. All these results highlight the biological potential of the fibrinogen/knob-g-HA hydrogels for 3D cellular engineering.

Keywords