Data in Brief (Jun 2024)

Event-based dataset for the detection and classification of manufacturing assembly tasks

  • Laura Duarte,
  • Pedro Neto

Journal volume & issue
Vol. 54
p. 110340

Abstract

Read online

The featured dataset, the Event-based Dataset of Assembly Tasks (EDAT24), showcases a selection of manufacturing primitive tasks (idle, pick, place, and screw), which are basic actions performed by human operators in any manufacturing assembly. The data were captured using a DAVIS240C event camera, an asynchronous vision sensor that registers events when changes in light intensity value occur. Events are a lightweight data format for conveying visual information and are well-suited for real-time detection and analysis of human motion. Each manufacturing primitive has 100 recorded samples of DAVIS240C data, including events and greyscale frames, for a total of 400 samples. In the dataset, the user interacts with objects from the open-source CT-Benchmark in front of the static DAVIS event camera. All data are made available in raw form (.aedat) and in pre-processed form (.npy). Custom-built Python code is made available together with the dataset to aid researchers to add new manufacturing primitives or extend the dataset with more samples.

Keywords