Nature Communications (May 2023)

Probing the atomically diffuse interfaces in Pd@Pt core-shell nanoparticles in three dimensions

  • Zezhou Li,
  • Zhiheng Xie,
  • Yao Zhang,
  • Xilong Mu,
  • Jisheng Xie,
  • Hai-Jing Yin,
  • Ya-Wen Zhang,
  • Colin Ophus,
  • Jihan Zhou

DOI
https://doi.org/10.1038/s41467-023-38536-z
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Deciphering the three-dimensional atomic structure of solid-solid interfaces in core-shell nanomaterials is the key to understand their catalytical, optical and electronic properties. Here, we probe the three-dimensional atomic structures of palladium-platinum core-shell nanoparticles at the single-atom level using atomic resolution electron tomography. We quantify the rich structural variety of core-shell nanoparticles with heteroepitaxy in 3D at atomic resolution. Instead of forming an atomically-sharp boundary, the core-shell interface is found to be atomically diffuse with an average thickness of 4.2 Å, irrespective of the particle’s morphology or crystallographic texture. The high concentration of Pd in the diffusive interface is highly related to the free Pd atoms dissolved from the Pd seeds, which is confirmed by atomic images of Pd and Pt single atoms and sub-nanometer clusters using cryogenic electron microscopy. These results advance our understanding of core-shell structures at the fundamental level, providing potential strategies into precise nanomaterial manipulation and chemical property regulation.