Diversity (Jan 2022)

Study of Rhizosphere Microbial Community Structures of Asian Wild and Cultivated Rice Showed That Cultivated Rice Had Decreased and Enriched Some Functional Microorganisms in the Process of Domestication

  • Jianfeng Zhang,
  • Zongmu Yao,
  • Yalin Chen,
  • Jiafan Zhang,
  • Shouyang Luo,
  • Chunjie Tian,
  • Lei Tian

DOI
https://doi.org/10.3390/d14020067
Journal volume & issue
Vol. 14, no. 2
p. 67

Abstract

Read online

Asian cultivated rice (Oryza sativa L.), domesticated from Asian wild rice, is a staple food crop for populations around the world. Asian cultivated rice has undergone physiological changes in the process of its evolution from Asian wild rice, and the closely related rhizosphere microorganisms may have changed in the process of plant domestication. However, the rhizosphere microorganisms of different Asian wild rice species and their related indica and japonica cultivated rice have not yet been illustrated clearly. This study aimed to illustrate the microbial community structures in the rhizosphere of Asian wild rice (common wild rice, nivara wild rice, medicinal wild rice, and spotted wild rice) and Asian cultivated rice (indica and japonica accessions) through the high-throughput sequencing of 16S rDNA, ITS amplifiers and metagenomic data. The results showed that there were significant differences between wild and cultivated rice in their rhizosphere microbial community structures. In view of the indica and japonica rice, the bacterial and fungal community structures of indica rice with the nivara wild rice and medicinal wild rice were more similar than the japonica rice species. The indica and japonica rice had the lowest proportion of Actinobacteria than the wild rice species, and indica rice has the highest relative abundance of Nitrospira. As for the microbial functions, methane metabolism and pyruvate metabolism were found to be the common pathway enriched in the rhizosphere of common and nivara wild rice in comparison with the indica and japonica rice; in addition, though it was found that the relative abundances of the pathogenic fungi in the rhizosphere soil of indica and japonica rice were significantly lower than that of the wild rice, the relative abundances of Magnaporthales and Ustilaginales were significantly higher in indica and japonica rice than that of the wild rice. This study is expected to provide a theoretical basis for the development and utilization of rhizosphere microbial resources for wild and cultivated rice.

Keywords