Applied Sciences (Feb 2020)
Application of Predictive Control in Scheduling of Domestic Appliances
Abstract
In this work, an algorithm for the scheduling of household appliances to reduce the energy cost and the peak-power consumption is proposed. The system architecture of a home energy management system (HEMS) is presented to operate the appliances. The dynamics of thermal and non-thermal appliances is represented into state-space model to formulate the scheduling task into a mixed-integer-linear-programming (MILP) optimization problem. Model predictive control (MPC) strategy is used to operate the appliances in real-time. The HEMS schedules the appliances in dynamic manner without any a priori knowledge of the load-consumption pattern. At the same time, the HEMS responds to the real-time electricity market and the external environmental conditions (solar radiation, ambient temperature, etc.). Simulation results exhibit the benefits of the proposed HEMS by showing the reduction of up to 70% in electricity cost and up to 57% in peak power consumption.
Keywords