Molecules (Nov 2023)

Designing Inorganic–Organic Dual-Acid Deep Eutectic Solvents for Synergistically Enhanced Extractive and Oxidative Desulfurization

  • Dongao Zhu,
  • Lixian Xu,
  • Beibei Zhang,
  • Linhua Zhu,
  • Jing He,
  • Hongping Li,
  • Huaming Li,
  • Wei Jiang

DOI
https://doi.org/10.3390/molecules28237743
Journal volume & issue
Vol. 28, no. 23
p. 7743

Abstract

Read online

Acidic deep eutectic solvents (DESs) have been considered desirable extractants and catalysts for desulfurization. However, their hydrogen bond donors (HBDs) are usually sole organic acids, which are not conducive to efficient green catalysis. Herein, a novel inorganic–organic dual-acid DES (DADES) was reported for efficient extractive and oxidative desulfurization. Benefiting from the physical interaction among the three components in a DADES, a transparent homogeneous liquid can be obtained even though inorganic acid (boric acid, BA) and organic acid (acetic acid, AA) can be immiscible. Furthermore, the dual-acid HBD can increase the acidity of the DADES and reduce its viscosity, accelerating its mass transfer efficiency and enhancing its catalytic activity. With 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) as the hydrogen bond acceptor, [Bmim]Cl/BA/0.3AA effectively activated hydrogen peroxide and achieved sulfur removal of 96.6% at 40 °C. Furthermore, the universality of the synergistic effect in various DADESs was confirmed by the modulation of the types of organic acids. This study not only motivates the construction of more intriguing novel DESs based on the DADES concept but also highlights their potential in clean fuel production.

Keywords