Jisuanji kexue (Mar 2022)
Study on Communication Optimization of Federated Learning in Multi-layer Wireless Edge Environment
Abstract
Existing model synchronization mechanisms of federated learning (FL) are mostly based on single-layer parameter server architecture,which are difficult to adapt to current heterogeneous wireless network scenarios.There are some problems such as excessive communication load on single-point and poor scalability of FL.In response to these problems,this paper proposes an efficient model synchronization scheme for FL in hybrid wireless edge networks.In a hybrid edge wireless network,edge devices transmit local models to nearby small base stations.After receiving local models from edge devices,small base stations exe-cute the aggregation algorithm and send the aggregated models to the macro base station to update the global model.Considering the heterogeneity of channel performance and the competitive relationship of data transmission on the wireless channel,this paper proposes a new type of grouping asynchronous model synchronization scheme and designs a transmission rate aware channel allocation algorithm.Experiments are carried out on real data sets.Experimental results show that the proposed transmission rate aware channel allocation algorithm in grouping asynchronous model synchronization scheme can reduce communication time by 25%~60% and greatly improve the training efficiency of FL.
Keywords