PLoS ONE (Jan 2015)

Crystal structure of human importin-α1 (Rch1), revealing a potential autoinhibition mode involving homodimerization.

  • Hideyuki Miyatake,
  • Akira Sanjoh,
  • Satoru Unzai,
  • Go Matsuda,
  • Yuko Tatsumi,
  • Yoichi Miyamoto,
  • Naoshi Dohmae,
  • Yoko Aida

DOI
https://doi.org/10.1371/journal.pone.0115995
Journal volume & issue
Vol. 10, no. 2
p. e0115995

Abstract

Read online

In this study, we determined the crystal structure of N-terminal importin-β-binding domain (IBB)-truncated human importin-α1 (ΔIBB-h-importin-α1) at 2.63 Å resolution. The crystal structure of ΔIBB-h-importin-α1 reveals a novel closed homodimer. The homodimer exists in an autoinhibited state in which both the major and minor nuclear localization signal (NLS) binding sites are completely buried in the homodimerization interface, an arrangement that restricts NLS binding. Analytical ultracentrifugation studies revealed that ΔIBB-h-importin-α1 is in equilibrium between monomers and dimers and that NLS peptides shifted the equilibrium toward the monomer side. This finding suggests that the NLS binding sites are also involved in the dimer interface in solution. These results show that when the IBB domain dissociates from the internal NLS binding sites, e.g., by binding to importin-β, homodimerization possibly occurs as an autoinhibition state.