Heliyon (Aug 2022)

The simulated cooling performance of a thin-film thermoelectric cooler with coupled-thermoelements connected in parallel

  • Tingzhen Ming,
  • Sen Chen,
  • Yonggao Yan,
  • Tingrui Gong,
  • Jianlong Wan,
  • Yongjia Wu

Journal volume & issue
Vol. 8, no. 8
p. e10025

Abstract

Read online

The thermoelements of the traditional thin-film thermoelectric cooler (TEC) are connected electrically in series, thus the performance of traditional thin-film TEC reduces sharply when there is something wrong with any thermoelement. On account of this deficiency, we proposed a novel thin-film TEC with a couple of thermoelements electrically connected in parallel and then electrically connected in series to the next couple of thermoelements. The performance and reliability of the novel thin-film TEC is compared with the traditional thin-film TEC. The maximum cooling capacity, the maximum cooling temperature, and the coefficient of performance of the novel and the traditional thin-film TEC are systematically studied and compared when 0, 2, and 4 thermoelements are disabled, respectively. The results show that the performance and reliability of the novel thin-film TEC are superior to that of the traditional thin-film TEC, while the optimal electric current of the novel thin-film TEC current is 2.14 times of that for the traditional thin-film TEC. This work is of great significance to improving the performance and reliability of thin-film thermoelectric devices consisting of dozens of small thermoelements.

Keywords