Symmetry (Mar 2022)
Temporal Quantum Memory and Non-Locality of Two Trapped Ions under the Effect of the Intrinsic Decoherence: Entropic Uncertainty, Trace Norm Nonlocality and Entanglement
Abstract
The engineering properties of trapped ions and their capacity to engender numerous quantum information resources determine many aspects of quantum information processing. We devise a setup of coherent and even coherent fields acting on two trapped ions to generate quantum memory, non-locality, and entanglement. Various effects, such as intrinsic decoherence, Lamb–Dicke regime, and dipole–dipole interaction are investigated. The inter-coupling of trapped ions, as well as the generation and dynamics of correlations between them, are analyzed. Using quantum memory assisted entropic uncertainty, trace-norm measurement induced non-locality, and concurrence, we find that the coherent and even coherent fields successfully generate non-local correlations in trapped-ions, with the latter being more resourceful for the dynamics and preservation of the non-local correlations. Furthermore, we observe that the entropic uncertainty and the trace norm induced non-locality present symmetrical dynamics. The dipole–dipole interaction improves correlation’s generation, robustness, and entropic uncertainty suppression.
Keywords