Sensors (Jan 2022)

Lead-Free LiNbO<sub>3</sub> Thick Film MEMS Kinetic Cantilever Beam Sensor/Energy Harvester

  • Gabriel Barrientos,
  • Giacomo Clementi,
  • Carlo Trigona,
  • Merieme Ouhabaz,
  • Ludovic Gauthier-Manuel,
  • Djaffar Belharet,
  • Samuel Margueron,
  • Ausrine Bartasyte,
  • Graziella Malandrino,
  • Salvatore Baglio

DOI
https://doi.org/10.3390/s22020559
Journal volume & issue
Vol. 22, no. 2
p. 559

Abstract

Read online

In this paper, we present integrated lead-free energy converters based on a suitable MEMS fabrication process with an embedded layer of LiNbO3. The fabrication technology has been developed to realize micromachined self-generating transducers to convert kinetic energy into electrical energy. The process proposed presents several interesting features with the possibility of realizing smaller scale devices, integrated systems, miniaturized mechanical and electromechanical sensors, and transducers with an active layer used as the main conversion element. When the system is fabricated in the typical cantilever configuration, it can produce a peak-to-peak open-circuit output voltage of 0.208 V, due to flexural deformation, and a power density of 1.9 nW·mm−3·g−2 at resonance, with values of acceleration and frequency of 2.4 g and 4096 Hz, respectively. The electromechanical transduction capability is exploited for sensing and power generation/energy harvesting applications. Theoretical considerations, simulations, numerical analyses, and experiments are presented to show the proposed LiNbO3-based MEMS fabrication process suitability. This paper presents substantial contributions to the state-of-the-art, proposing an integral solution regarding the design, modelling, simulation, realization, and characterization of a novel transducer.

Keywords