Malaria Journal (Jul 2023)

Can the performance of pyrethroid-chlorfenapyr nets be reduced when combined with pyrethroid-piperonyl butoxide (PBO) nets?

  • Thomas Syme,
  • Judicaël Nounagnon,
  • Boris N’dombidjé,
  • Martial Gbegbo,
  • Abel Agbevo,
  • Juniace Ahoga,
  • Corine Ngufor

DOI
https://doi.org/10.1186/s12936-023-04648-6
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Pyrethroid-chlorfenapyr (CFP) and pyrethroid-piperonyl butoxide (PBO) nets are being scaled across endemic countries to improve control of malaria transmitted by pyrethroid-resistant mosquitoes. CFP is a pro-insecticide requiring activation by mosquito cytochrome P450 monooxygenase enzymes (P450s) while PBO improves pyrethroid potency by inhibiting the action of these enzymes in pyrethroid-resistant mosquitoes. The inhibitory action of PBO against P450s may thus reduce the efficacy of pyrethroid-CFP nets when applied inside the same household as pyrethroid-PBO nets. Methods Two experimental hut trials were performed to evaluate the entomological impact of two different types of pyrethroid-CFP ITN (Interceptor® G2, PermaNet® Dual) when applied alone and in combination with pyrethroid-PBO ITNs (DuraNet® Plus, PermaNet® 3.0) against a pyrethroid-resistant vector population in southern Benin. In both trials, all net types were tested as single and double net treatments. Bioassays were also performed to assess the resistance profile of the vector population at the hut site and investigate interactions between CFP and PBO. Results The vector population was susceptible to CFP but exhibited a high intensity of pyrethroid resistance that was overcame by PBO pre-exposure. Vector mortality was significantly lower in huts with combinations of pyrethroid-CFP nets plus pyrethroid-PBO nets compared to huts with two pyrethroid-CFP nets (74% vs. 85% for Interceptor® G2 and 57% vs. 83% for PermaNet® Dual, p < 0.001). PBO pre-exposure reduced the toxicity of CFP in bottle bioassays suggesting this effect may be partly attributable to antagonism between CFP and PBO. Higher levels of vector mortality were observed in huts with net combinations that included pyrethroid-CFP nets compared to those that did not and highest mortality was achieved when pyrethroid-CFP nets were applied alone as two nets together (83–85%). Conclusions This study shows evidence of a reduced performance of pyrethroid-CFP nets when combined with pyrethroid-PBO ITNs compared to when applied alone and higher efficacy with net combinations that included pyrethroid-CFP nets. These findings suggest that in similar contexts, prioritizing distribution of pyrethroid-CFP nets over other net types would maximize vector control impact.

Keywords