Nanoscale Research Letters (Sep 2019)

Atomic-Scale Characterization of Slip Deformation and Nanometric Machinability of Single-Crystal 6H-SiC

  • Binbin Meng,
  • Dandan Yuan,
  • Shaolin Xu

DOI
https://doi.org/10.1186/s11671-019-3123-7
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 9

Abstract

Read online

Abstract As an important third-generation semiconductor material, the micro-deformation and removal mechanism of 6H-SiC at the atomic scale are vital for obtaining ultra-smooth and damage-free surface with atomic steps. Due to the difficulties in directly observing the surface/subsurface of nanomachining region by current experimental means, molecular dynamics method is used to study the atomic-scale details in nanomachining process, such as dislocation slip motion, phase transition, and material separation mechanism. The influence of crystallography-induced anisotropy on the slip deformation and nanometric machinability of 6H-SiC is emphatically investigated. This study contributes significantly to the understanding of micro-deformation and nanomachining process of 6H-SiC.

Keywords