Batteries (Sep 2018)

A New Glass-Forming Electrolyte Based on Lithium Glycerolate

  • Gioele Pagot,
  • Sara Tonello,
  • Keti Vezzù,
  • Vito Di Noto

DOI
https://doi.org/10.3390/batteries4030041
Journal volume & issue
Vol. 4, no. 3
p. 41

Abstract

Read online

The detailed study of the interplay between the physicochemical properties and the long-range charge migration mechanism of polymer electrolytes able to carry lithium ions is crucial in the development of next-generation lithium batteries. Glycerol exhibits a number of features (e.g., glass-forming behavior, low glass transition temperature, high flexibility of the backbone, and efficient coordination of lithium ions) that make it an appealing ion-conducting medium and a challenging building block in the preparation of new inorganic–organic polymer electrolytes. This work reports the preparation and the extensive investigation of a family of 11 electrolytes based on lithium glycerolate. The electrolytes have the formula C3H5(OH)3−x(OLi)x, where 0 ≤ x ≤ 1. The elemental composition is evaluated by inductively coupled plasma atomic emission spectroscopy. The structure and interactions are studied by vibrational spectroscopies (FT-IR and micro-Raman). The thermal properties are gauged by modulated differential scanning calorimetry and thermogravimetric analysis. Finally, insights on the long-range charge migration mechanism and glycerol relaxation events are investigated via broadband electrical spectroscopy. Results show that in these electrolytes, glycerolate acts as a large and flexible macro-anion, bestowing to the material single-ion conductivity (1.99 × 10−4 at 30 °C and 1.55 × 10−2 S∙cm−1 at 150 °C for x = 0.250).

Keywords