International Journal of Medicine and Health Development (Jan 2020)

Histomorphological characterization of Pneumococcal meningitis in bone marrow of Wistar rats treated with Bridelia ferruginea and ciprofloxacin

  • Olusegun Dare Omotoso,
  • Abdullahi A Alfa,
  • Samson E Olorunnado,
  • Kokori B Tijani

DOI
https://doi.org/10.4103/ijmh.IJMH_4_20
Journal volume & issue
Vol. 25, no. 2
pp. 90 – 95

Abstract

Read online

Background: Bridelia ferruginea is one of the most valuable ethnomedicinal plants, which has been confirmed for antimicrobial activities and tissue-enhancing properties against degenerative processes. This study aimed at investigating the histomorphological characterization of ethanol extracts of leaf, stem-bark, and root of B. ferruginea on Pneumococcal-meningitis-induced bone marrow damage. Materials and Methods: Sixty-three Wistar rats were randomly divided into nine groups of seven rats each. Group B-F2 were inoculated with 1 × 109 colony-forming units (CFU)/mL of P. meningitis and were left for 72h before treatment. Group A rats (normal control) received 2.5 mg/kg of phosphate-buffered saline (PBS), whereas group B rats (negative control) were left untreated, group C rats (positive control) were treated with single dose daily of 1.4 mg/kg ciprofloxacin tablets, group D1 received 300 mg/kg B. ferruginea leaf extract, group D2 received 600 mg/kg B. ferruginea leaf extract, group E1 received 300 mg/kg B. ferruginea stem-bark extract, group E2 received 600 mg/kg B. ferruginea stem-bark extract, group F1 received 300 mg/kg B. ferruginea root extract, and group F2 received 600 mg/kg B. ferruginea root extract for 2 weeks after which all the animals were killed via cervical dislocation. Results: Ciprofloxacin and the leaf, stem-bark, and root extracts of B. ferruginea were able to avert and managed damage (tissue damage, histomorphological, and cytoarchitectural parameter) caused by P. meningitis in the bone marrow of adult Wistar rats. Conclusion: Bridelia ferruginea has antibacterial activities against factors causing bone marrow erythyroid hyperplasia, osteomyelitis as well as hemolytic anemia.

Keywords