Biomedicines (Apr 2024)
Proposal and Definition of an Intelligent Clinical Decision Support System Applied to the Prediction of Dyspnea after 12 Months of an Acute Episode of COVID-19
Abstract
Long COVID is a condition that affects a significant proportion of patients who have had COVID-19. It is characterised by the persistence of associated symptoms after the acute phase of the illness has subsided. Although several studies have investigated the risk factors associated with long COVID, identifying which patients will experience long-term symptoms remains a complex task. Among the various symptoms, dyspnea is one of the most prominent due to its close association with the respiratory nature of COVID-19 and its disabling consequences. This work proposes a new intelligent clinical decision support system to predict dyspnea 12 months after a severe episode of COVID-19 based on the SeguiCovid database from the Álvaro Cunqueiro Hospital in Vigo (Galicia, Spain). The database is initially processed using a CART-type decision tree to identify the variables with the highest predictive power. Based on these variables, a cascade of expert systems has been defined with Mamdani-type fuzzy-inference engines. The rules for each system were generated using the Wang-Mendel automatic rule generation algorithm. At the output of the cascade, a risk indicator is obtained, which allows for the categorisation of patients into two groups: those with dyspnea and those without dyspnea at 12 months. This simplifies follow-up and the performance of studies aimed at those patients at risk. The system has produced satisfactory results in initial tests, supported by an AUC of 0.75, demonstrating the potential and usefulness of this tool in clinical practice.
Keywords