High Temperature Materials and Processes (Nov 2020)
Damage accumulation and lifetime prediction of fiber-reinforced ceramic-matrix composites under thermomechanical fatigue loading
Abstract
In this paper, the damage accumulation and life prediction in fiber-reinforced ceramic-matrix composites (CMCs) subjected to thermomechanical fatigue (TMF) loading are investigated. The relationships between TMF damage mechanisms, fatigue hysteresis-based damage parameters, fraction of broken fiber, and applied cycles are established. Evolution of fatigue hysteresis dissipated energy, fatigue hysteresis modulus, fatigue peak strain, fatigue broken fiber fraction versus applied cycle curves, and the fatigue life S–N curves is analyzed. Damage accumulation and fatigue life of cross-ply silicon carbide/magnesium aluminosilicate composite under in-phase (IP)- and out-of-phase (OP)-TMF and isothermal fatigue (IF) loading are predicted. Under the same fatigue peak stress, the fatigue lifetime decreases from IF loading at 566°C to IF loading at 1,093°C, IP-TMF and OP-TMF. The TMF loading significantly reduced the fatigue lifetime of CMCs.
Keywords