Ultrasonics Sonochemistry (Jul 2024)

Facile room temperature synthesis of size-controlled spherical silica from silicon metal via simple sonochemical process

  • Ren Zushi,
  • Yamato Hayashi,
  • Toshiki Yamanaka,
  • Hirotsugu Takizawa

Journal volume & issue
Vol. 107
p. 106913

Abstract

Read online

The waterglass or St o¨ ber method is commonly used to synthesize spherical colloidal silica; however, these methods have some disadvantages, such as complicated processes for the removal of sodium ions and expensive and energy-consuming raw materials such as tetraethoxysilane (TEOS). In this study, size-controlled spherical colloidal silica was synthesized from silicon metal at room temperature using an ultrasound process with hydrazine monohydrate as the solvent. Silicon metal dissolves easily in hydrazine monohydrate under ultrasound irradiation, and spherical colloidal silica can be synthesized by adding alcohol to this precursor solution. By changing the concentration or type of alcohol, size-controlled colloidal silica 20–200 nm in size could be easily obtained. In addition, finer and more monodisperse particles were produced by low-frequency ultrasound irradiation, which had a higher stirring effect at the particle formation stage. The present method is effective because size-controlled colloidal silica can be synthesized at room temperature using only silicon metal, hydrazine, and alcohol as raw materials, without complicated processes or expensive and energy-consuming raw materials such as TEOS or tetramethoxysilane (TMOS).

Keywords