Heliyon (Jun 2024)
Nanowires: Exponential speedup in quantum computing
Abstract
This review paper examines the crucial role of nanowires in the field of quantum computing, highlighting their importance as versatile platforms for qubits and vital building blocks for creating fault-tolerant and scalable quantum information processing systems. Researchers are studying many categories of nanowires, including semiconductor, superconducting, and topological nanowires, to explore their distinct quantum features that play a role in creating various qubit designs. The paper explores the interdisciplinary character of quantum computing, combining the fields of quantum physics and materials science. This text highlights the significance of quantum gate operations in manipulating qubits for computation, thus creating the toolbox of quantum algorithms. The paper emphasizes the key research areas in quantum technology, such as entanglement engineering, quantum error correction, and a wide range of applications spanning from encryption to climate change modeling. The research highlights the importance of tackling difficulties related to decoding mitigation, error correction, and hardware scalability to fully utilize the transformative potential of quantum computing in scientific, technical, and computational fields.