PLoS ONE (Jan 2022)

Long-term molecular turnover of actin stress fibers revealed by advection-reaction analysis in fluorescence recovery after photobleaching.

  • Takumi Saito,
  • Daiki Matsunaga,
  • Shinji Deguchi

DOI
https://doi.org/10.1371/journal.pone.0276909
Journal volume & issue
Vol. 17, no. 11
p. e0276909

Abstract

Read online

Fluorescence recovery after photobleaching (FRAP) is a versatile technique to evaluate the intracellular molecular exchange called turnover. Mechanochemical models of FRAP typically consider the molecular diffusion and chemical reaction that simultaneously occur on a time scale of seconds to minutes. Particularly for long-term measurements, however, a mechanical advection effect can no longer be ignored, which transports the proteins in specific directions within the cells and accordingly shifts the spatial distribution of the local chemical equilibrium. Nevertheless, existing FRAP models have not considered the spatial shift, and as such, the turnover rate is often analyzed without considering the spatiotemporally updated chemical equilibrium. Here we develop a new FRAP model aimed at long-term measurements to quantitatively determine the two distinct effects of the advection and chemical reaction, i.e., the different major sources of the change in fluorescence intensity. To validate this approach, we carried out FRAP experiments on actin in stress fibers over a time period of more than 900 s, and the advection rate was shown to be comparable in magnitude to the chemical dissociation rate. We further found that the actin-myosin interaction and actin polymerization differently affect the advection and chemical dissociation. Our results suggest that the distinction between the two effects is indispensable to extract the intrinsic chemical properties of the actin cytoskeleton from the observations of complicated turnover in cells.