Advanced Science (Feb 2021)
Sacrificial Synthesis of Supported Ru Single Atoms and Clusters on N‐doped Carbon Derived from Covalent Triazine Frameworks: A Charge Modulation Approach
Abstract
Abstract High‐temperature pyrolysis of nitrogen (N)‐rich, crystalline porous organic architectures in the presence of a metal precursor is an important chemical process in heterogeneous catalysis for the fabrication of highly porous N‐carbon‐supported metal catalysts. Herein, covalent triazine framework (CTF) and CTF‐I (that is, CTF after charge modulation with iodomethane) are presented as sacrificial templates, for the synthesis of carbon‐supported Ru catalysts—Ru‐CTF‐900 and Ru‐CTF‐I‐900 respectively, following high‐temperature pyrolysis at 900 °C under N2 atmosphere. Predictably, the dispersed Ru on pristine CTF carrier suffered severe sintering of the Ru nanoparticles (NPs) during heat treatment at 900 °C. However, the Ru‐CTF‐I‐900 catalyst is composed of ultra‐small Ru NPs and abundant Ru single atoms which may have resulted from much stronger RuN interactions. Through modification of the micro‐environment within the CTF architecture, Ru precursor interacted on charged‐modulated CTF framework shows electrostatic repulsion and steric hindrance, thus contributing toward the high density of single Ru atoms and even smaller Ru NPs after pyrolysis. A RuRu coordination number of only 1.3 is observed in the novel Ru‐CTF‐I‐900 catalyst, which exhibits significantly higher catalytic activity than Ru‐CTF‐900 for transfer hydrogenation of acetophenone.
Keywords