PLoS ONE (Jan 2019)

Expression of myeloid Src-family kinases is associated with poor prognosis in AML and influences Flt3-ITD kinase inhibitor acquired resistance.

  • Ravi K Patel,
  • Mark C Weir,
  • Kexin Shen,
  • Daniel Snyder,
  • Vaughn S Cooper,
  • Thomas E Smithgall

DOI
https://doi.org/10.1371/journal.pone.0225887
Journal volume & issue
Vol. 14, no. 12
p. e0225887

Abstract

Read online

Unregulated protein-tyrosine kinase signaling is a common feature of AML, often involving mutations in Flt3 and overexpression of myeloid Src-family kinases (Hck, Fgr, Lyn). Here we show that high-level expression of these Src kinases predicts poor survival in a large cohort of AML patients. To test the therapeutic benefit of Flt3 and Src-family kinase inhibition, we used the pyrrolopyrimidine kinase inhibitor A-419259. This compound potently inhibits Hck, Fgr, and Lyn as well as Flt3 bearing an activating internal tandem duplication (ITD). Flt3-ITD expression sensitized human TF-1 myeloid cells to growth arrest by A-419259, supporting direct action on the Flt3-ITD kinase domain. Cells transformed with the Flt3-ITD mutants D835Y and F691L were resistant to A-419259, while co-expression of Hck or Fgr restored inhibitor sensitivity to Flt3-ITD D835Y. Conversely, Hck and Fgr mutants with engineered A-419259 resistance mutations decreased sensitivity of TF-1/Flt3-ITD cells. To investigate de novo resistance mechanisms, A-419259-resistant Flt3-ITD+ AML cell populations were derived via long-term dose escalation. Whole exome sequencing identified a distinct Flt3-ITD kinase domain mutation (N676S/T) among all A-419259 target kinases in each of six independent resistant cell populations. These studies show that Hck and Fgr expression influences inhibitor sensitivity and the pathway to acquired resistance in Flt3-ITD+ AML.