Journal of Immunology Research (Jan 2017)

Bactericide, Immunomodulating, and Wound Healing Properties of Transgenic Kalanchoe pinnata Synergize with Antimicrobial Peptide Cecropin P1 In Vivo

  • A. A. Lebedeva,
  • N. S. Zakharchenko,
  • E. V. Trubnikova,
  • O. A. Medvedeva,
  • T. V. Kuznetsova,
  • G. A. Masgutova,
  • M. V. Zylkova,
  • Y. I. Buryanov,
  • A. S. Belous

DOI
https://doi.org/10.1155/2017/4645701
Journal volume & issue
Vol. 2017

Abstract

Read online

Procedure of manufacturing K. pinnata water extracts containing cecropin P1 (CecP1) from the formerly described transgenic plants is established. It included incubation of leaves at +4°C for 7 days, mechanical homogenization of leaves using water as extraction solvent, and heating at +70°C for inactivating plant enzymes. Yield of CecP1 (after heating and sterilizing filtration) was 0.3% of total protein in the extract. The water extract of K. pinnata + CecP1 exhibits favorable effect on healing of wounds infected with S. aureus (equal to Cefazolin) and with a combination of S. aureus with P. aeruginosa (better than Cefazolin). Wild-type K. pinnata extract exhibited evident microbicide activity against S. aureus with P. aeruginosa but it was substantially strengthened in K. pinnata + CecP1 extract. K. pinnata extracts (both wild-type and transgenic) did not exhibit general toxicity and accelerated wound recovery. Due to immunomodulating activity, wild-type K. pinnata extract accelerated granulation of the wound bed and marginal epithelialization even better than K. pinnata + CecP1 extract. Immunomodulating and microbicide activity of K. pinnata synergizes with microbicide activity of CecP1 accelerating elimination of bacteria.