BMC Public Health (Feb 2018)

Effectiveness of active school transport interventions: a systematic review and update

  • Richard Larouche,
  • George Mammen,
  • David A. Rowe,
  • Guy Faulkner

DOI
https://doi.org/10.1186/s12889-017-5005-1
Journal volume & issue
Vol. 18, no. 1
pp. 1 – 18

Abstract

Read online

Abstract Background Active school transport (AST) is a promising strategy to increase children’s physical activity. A systematic review published in 2011 found large heterogeneity in the effectiveness of interventions in increasing AST and highlighted several limitations of previous research. We provide a comprehensive update of that review. Methods Replicating the search of the previous review, we screened the PubMed, Web of Science, Cochrane, Sport Discus and National Transportation Library databases for articles published between February 1, 2010 and October 15, 2016. To be eligible, studies had to focus on school-aged children and adolescents, include an intervention related to school travel, and report a measure of travel behaviors. We assessed quality of individual studies with the Effective Public Health Practice Project quality assessment tool, and overall quality of evidence with the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) approach. We calculated Cohen’s d as a measure of effect size. Results Out of 6318 potentially relevant articles, 27 articles reporting 30 interventions met our inclusion criteria. Thirteen interventions resulted in an increase in AST, 8 found no changes, 4 reported inconsistent results, and 5 did not report inferential statistics. Cohen’s d ranged from −0.61 to 0.75, with most studies reporting “trivial-to-small” positive effect sizes. Three studies reported greater increases in AST over longer follow-up periods and two Safe Routes to School studies noted that multi-level interventions were more effective. Study quality was rated as weak for 27/30 interventions (due notably to lack of blinding of outcome assessors, unknown psychometric properties of measurement tools, and limited control for confounders), and overall quality of evidence was rated as low. Evaluations of implementation suggested that interventions were limited by insufficient follow-up duration, incomplete implementation of planned interventions, and limited access to resources for low-income communities. Conclusions Interventions may increase AST among children; however, there was substantial heterogeneity across studies and quality of evidence remains low. Future studies should include longer follow-ups, use standardized outcome measures (to allow for meta-analyses), and examine potential moderators and mediators of travel behavior change to help refine current interventions. Trial registration Registered in PROSPERO: CRD42016033252

Keywords