Journal of Marine Science and Engineering (Mar 2023)
Antifouling Potential of <i>Diadema setosum</i> and <i>Sonneratia lanceolata</i> Extracts for Marine Applications
Abstract
Marine resources such as marine invertebrates and mangrove plants favor the production of secondary metabolites that exhibit antifouling properties. These natural-derived compounds are considered environmentally friendly compared to synthetic compounds with similar activity and technological applications. The current study was conducted to determine the antifouling properties of Diadema setosum (DS) and Sonneratia lanceolata (SL) crude extracts and their incorporated paints, in addition to the identification of the metabolites involved. Both crude extracts were tested against Pseudomonas aeruginosa via a crystal violet assay, while the incorporated paints with 5% (SL5% and DS5%) and 10% (SL10% and DS10%) weight per volume (w/v) were tested in an aquarium and submerged in the seawater at Kemaman and Pulau Redang (Malaysia) for field testing. The identification of the bioactive compounds from the crude extracts was carried out using Liquid Chromatography-Mass Spectrometry (LC-MS). The results of the crystal violet assay showed that both of the crude extracts reduced the biofilm formed by Pseudomonas aeruginosa. The marine bacteria growths contained in natural seawater were inhibited the most by SL5%, followed by DS5%, DS10%, and SL10% in the aquarium testing. Based on the photographic observation, all of the paints incorporated with the crude extracts successfully reduced the settlement of fouling organisms compared to the blank paint, as lesser macroalgae were found growing on the SL5%, DS5%, and DS10%. The LC-MS results showed 3-Methyloxiranyl phosphonic acid; (2RS,3SR)-form from the SL crude extract, while the 8-Decene-1,3,5-triol, 3-Hydroxyundecanoic acid, and 1-O-(6-Deoxy-6-sulfoglucopyranosyl)glycerol; α-D-form, 3-Hexadecanoyl from the DS crude extract were involved in the antifouling properties. In conclusion, both crude extracts have the potential to be developed as antifouling agents.
Keywords