PeerJ (Jun 2020)
CRISPR 2 PCR and high resolution melting profiling for identification and characterization of clinically-relevant Salmonella enterica subsp. enterica
Abstract
Background Nontyphoidal Salmonella spp. constitute a major bacterial cause of food poisoning. Each Salmonella serotype causes distinct virulence to humans. Method A small cohort study was conducted to characterize several aspects of Salmonella isolates obtained from stool of diarrheal patients (n = 26) admitted to Phayao Ram Hospital, Phayao province, Thailand. A simple CRISPR 2 molecular analysis was developed to rapidly type Salmonella isolates employing both uniplex and high resolution melting (HRM) curve analysis. Results CRISPR 2 monoplex PCR generated a single Salmonella serotype-specific amplicon, showing S. 4,[5],12:i:- with highest frequency (42%), S. Enteritidis (15%) and S. Stanley (11%); S. Typhimurium was not detected. CRISPR 2 HRM-PCR allowed further classification of S. 4,[5],12:i:- isolates based on their specific CRISPR 2 signature sequences. The highest prevalence of Salmonella infection was during the summer season (April to August). Additional studies were conducted using standard multiplex HRM-PCR typing, which confirmed CRISPR 2 PCR results and, using a machine-learning algorithm, clustered the majority of Salmonella serotypes into six clades; repetitive element-based (ERIC) PCR, which clustered the serotypes into three clades only; antibiogram profiling, which revealed the majority resistant to ampicillin (69%); and test for extended spectrum β-lactamase production (two isolates) and PCR-based detection of bla alleles. Conclusion CRISPR 2 PCR provided a simple assay for detection and identification of clinically-relevant Salmonella serotypes. In conjunction with antibiogram profiling and rapid assay for β-lactamase producers, this approach should facilitate detection and appropriate treatment of Salmonellosis in a local hospital setting. In addition, CRISPR 2 HRM-PCR profiling enabled clustering of S. 4,[5],12:i:-isolates according to CRISPR 2 locus signature sequences, indicative of their different evolutionary trajectories, thereby providing a powerful tool for future epidemiological studies of virulent Salmonella serotypes.
Keywords