Polymers (Jan 2023)

Fully Flexible Covalent Organic Frameworks for Fluorescence Sensing 2,4,6-Trinitrophenol and <i>p</i>-Nitrophenol

  • Hai Zhu,
  • Tong-Mou Geng,
  • Kai-Bin Tang

DOI
https://doi.org/10.3390/polym15030653
Journal volume & issue
Vol. 15, no. 3
p. 653

Abstract

Read online

Nitrophenols are important nitroaromatic compounds, both important environmental pollutants and dangerous explosives, posing a devastating danger and pollution threat to humans. It is vital to detect efficiently trace nitrophenols in the environment. In this contribution, a series of fully flexible cyclotriphosphazene-based COFs (FFCP COFs: HDADE, HBAPB, and HBPDA), prepared with both a flexible knot and flexible linkers of different lengths, were used for sensing 2,4,6-trinitrophenol (TNP) and p-nitrophenol (p-NP) in real time with excellent sensitivity and selectivity. The quenching constants of HDADE by TNP, HBAPB, and HBPDA by p-NP are 6.29 × 104, 2.17 × 105, and 2.48 × 105 L·mol–1, respectively. The LODs of TNP and p-NP are 1.19 × 10−11, 6.91 × 10−12, and 6.05 × 10−12 mol·L−1. Their sensitivities increase with the linker length, which is better than the corresponding COFs composed of rigid linkers. There is only a photoinduced electron transfer mechanism in the fluorescence quenching of HBPDA by p-NP. Meanwhile, the mechanisms of photoinduced charge transfer and resonance energy transfer exist in the fluorescence quenching of HDADE by TNP and the fluorescence quenching of HBAPB by p-NP.

Keywords