Journal of Translational Medicine (Jul 2024)

Antibody targeting of anaerobic bacteria warms cold tumors and improves the abscopal effect of radiotherapy

  • WeiZhou Wang,
  • YunXue Zheng,
  • ZhouXue Wu,
  • Min Wu,
  • Yue Chen,
  • Yan Zhang,
  • ShaoZhi Fu,
  • JingBo Wu

DOI
https://doi.org/10.1186/s12967-024-05469-0
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background The combination of immune checkpoint inhibitors with radiotherapy can enhance the immunomodulation by RT and reduce the growth of distant unirradiated tumors (abscopal effect); however, the results are still not very satisfactory. Therefore, new treatment options are needed to enhance this effect. Our previous study showed that the combination of Bifidobacterium (Bi) and its specific monoclonal antibody (mAb) could target and alleviate hypoxia at the tumor site and act as a radiosensitizer. In this study, we explored the anti-tumor efficacy of quadruple therapy (Bi + mAb and RT + αPD-1). The current study also aimed to probe into the complex immune mechanisms underlying this phenomenon. Methods Constructed 4T1 breast and CT26 colon cancer tumor models. A comprehensive picture of the impact of constructed quadruple therapy was provided by tumor volume measurements, survival analysis, PET/CT imaging, immune cell infiltration analysis and cytokine expression levels. Results The abscopal effect was further amplified in the “cold” tumor model and prolonged survival in tumor-bearing mice. Bi can colonized in primary and secondary tumors and direct the mAb to reach the tumor site, activate complement, enhance the ADCC effect and initiate the innate immune response. Then combined with αPD-1 and radiotherapy to stimulate adaptive immune response and synergize with cytokines to expand the immune efficacy and generate effective anti-tumor immune response. Conclusions Bi was used as an artificially implanted anaerobic target to cause a transient “infection” at the tumor, causing the tumor to become locally inflamed and “hot”, and at the same time, mAb was used to target Bi to enhance the local immune effect of the tumor, and then combined with radiotherapy and αPD-1 to amplify the abscopal effect in multiple dimensions. Therefore, the present study provided a new idea for the multipotent immune-activating function of antibody-targeted anaerobic bacteria for the RT treatment of extensively metastasized cancer patients.

Keywords