Applied Sciences (Oct 2021)

Research on Computational Method of Supersonic Inlet/Isolator Internal Flow

  • Zhuoran Liu,
  • Caizheng Wang,
  • Ke Zhang,
  • Zhuo Zhao,
  • Zhifeng Xie

DOI
https://doi.org/10.3390/app11199272
Journal volume & issue
Vol. 11, no. 19
p. 9272

Abstract

Read online

In this research, a CFD solver is developed for solving the 2D/3D compressible flow problem: the finite volume method based on multi-block structural grids is used to solve the compressible Reynolds averaged Navier–Stokes equations (RANS). Included in the methodology are multiple high-order reconstruction schemes, such as the 3rd-order MUSCL (Monotone Upstreamcentered Schemes for Conservation Laws), 5th-order WENO (Weight Essentially Non-Oscillatory), and 5th-order MP (Monotonicity-Preserving) schemes. Of the variety of turbulence models that are embedded, this solver is mainly based on the shear stress transport model (SST), which is compatible with OpenMP/MPI parallel algorithms. This research uses the CFD solver to conduct steady-state flow simulation for a two-dimensional supersonic inlet/isolator, incorporating these high-precision reconstruction schemes to accurately capture the shock wave/expansion wave interaction and shock wave/turbulent boundary layer interaction (SWTBLI), among other effects. By comparing the 2D/3D computation results of the same inlet configuration, it is found that the 3D effects of the side wall cannot be ignored due to the existing strong lateral flow near the corner. To obtain a more refined turbulence simulation, the commercial software ANSYS Fluent 18.0 is used to carry out the detached eddy simulation (DES) and the large eddy simulation (LES) of the same supersonic inlet, so as to reveal the flow details near the separation area and boundary layers.

Keywords