Molecular Systems Biology (Oct 2011)

Toward an understanding of the protein interaction network of the human liver

  • Jian Wang,
  • Keke Huo,
  • Lixin Ma,
  • Liujun Tang,
  • Dong Li,
  • Xiaobi Huang,
  • Yanzhi Yuan,
  • Chunhua Li,
  • Wei Wang,
  • Wei Guan,
  • Hui Chen,
  • Chaozhi Jin,
  • Junchen Wei,
  • Wanqiao Zhang,
  • Yongsheng Yang,
  • Qiongming Liu,
  • Ying Zhou,
  • Cuili Zhang,
  • Zhihao Wu,
  • Wangxiang Xu,
  • Ying Zhang,
  • Tao Liu,
  • Donghui Yu,
  • Yaping Zhang,
  • Liang Chen,
  • Dewu Zhu,
  • Xing Zhong,
  • Lixin Kang,
  • Xiang Gan,
  • Xiaolan Yu,
  • Qi Ma,
  • Jing Yan,
  • Li Zhou,
  • Zhongyang Liu,
  • Yunping Zhu,
  • Tao Zhou,
  • Fuchu He,
  • Xiaoming Yang

DOI
https://doi.org/10.1038/msb.2011.67
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Proteome‐scale protein interaction maps are available for many organisms, ranging from bacteria, yeast, worms and flies to humans. These maps provide substantial new insights into systems biology, disease research and drug discovery. However, only a small fraction of the total number of human protein–protein interactions has been identified. In this study, we map the interactions of an unbiased selection of 5026 human liver expression proteins by yeast two‐hybrid technology and establish a human liver protein interaction network (HLPN) composed of 3484 interactions among 2582 proteins. The data set has a validation rate of over 72% as determined by three independent biochemical or cellular assays. The network includes metabolic enzymes and liver‐specific, liver‐phenotype and liver‐disease proteins that are individually critical for the maintenance of liver functions. The liver enriched proteins had significantly different topological properties and increased our understanding of the functional relationships among proteins in a liver‐specific manner. Our data represent the first comprehensive description of a HLPN, which could be a valuable tool for understanding the functioning of the protein interaction network of the human liver.

Keywords