BMC Microbiology (Oct 2024)
Antineoplastic with DNA fragmentation assay and anti-oxidant, anti-inflammatory with gene expression activity of Lactobacillus plantarum isolated from local Egyptian milk products
Abstract
Abstract Many lactic acid bacteria (LAB), known for their human health benefits, are derived from milk and utilized in biotherapeutic applications or for producing valuable nutraceuticals. However, the specific role of milk-associated LAB in biotherapeutics remains underexplored. To address this, eight milk product samples were randomly selected from the Egyptian market, diluted, and then cultured anaerobically on MRS agar. Subsequently, 16 suspected LAB isolates were recovered and underwent rapid preliminary identification. Among these isolates, the Lactobacillus plantarum strain with accession number (OQ547261.1) was identified due to its strong antioxidant activity depending on the DPPH assay, L. plantarum displayed notable antioxidant activities of 71.8% and 93.8% at concentrations of 125–1000 µg/mL, respectively. While ascorbic acid showed lower concentrations of 7.81, 3.9, and 1.95 µg/mL which showed activities of 45.1%, 34.2%, and 27.2%, respectively. The anti-inflammatory efficacy of L. plantarum was evaluated based on its capability to prevent hemolysis induced by hypotonic conditions. At a concentration of 1000 µg/mL, L. plantarum could reduce hemolysis by 97.7%, nearly matching the 99.5% inhibition rate achieved by the standard drug, indomethacin, at an identical concentration. Moreover, L. plantarum exhibited high hemolytic activity at 100 µg/mL (14.3%), which decreased to 1.4% at 1000 µg/mL. The abundance of phenolic acids and flavonoids was determined by high-performance liquid chromatography (HPLC) in L. plantarum. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) demonstrated that L. plantarum increased gene expression of the inflammatory marker TLR2 by 133%, and cellular oxidation markers SOD1 and SOD2 by 65% and 74.2%, respectively, while suppressing CRP expression by 33.3%. These results underscore L. plantarum’s exceptional anti-inflammatory and antioxidant activities. Furthermore, L. plantarum induces cancer cell death through necrotic nuclear DNA fragmentation. These findings suggest that L. plantarum is not only suitable for nutraceutical production but also holds potential as a probiotic strain. Future research should focus on enhancing the capacity of this strain across various industries and fostering innovation in multiple fields.
Keywords